

iTunes Heuristic Evaluation Report

Emily Tennant
Dino Anastasia
Cara D’Amato

Assignment 6
SI 622
Judy Olson
Mailbox #261
February 23, 2005

1

EXECUTIVE SUMMARY

This report provides a detailed analysis of the heuristic evaluation process used to evaluate

iTunes, Apple’s digital music application. The evaluation itself was performed using the

heuristic evaluation usability method, based on heuristics provided by Jakob Nielsen. This

method consists of evaluators comparing a pre-defined set of usability principles to an

application or website while attempting to complete a system task.

For this project, nine heuristics were used, focusing on the core functionalities of iTunes:

importing, organizing and playing digital music and burning CDs. The goal of this evaluation

was to identify major usability flaws within the iTunes interface through the application of these

nine heuristics:

1. Use Aesthetic and Minimalist Design

2. Effective Menu/Command Structure

3. Use Simple and Natural Language

4. Minimize User’s Memory Load

5. Be Consistent

6. Provide Feedback

7. Provide Clearly Marked Exits

8. Deal with Errors in a Positive Manner

9. Provide Help

The usability problems found from this evaluation are clustered into eleven areas and are ranked

according to their severity and ease with which the problem can be solved. The seven most

severe and easiest to fix problems are:

1. Inconsistencies between menus and buttons

2. Some language does not correspond with user terminology

3. There are buttons that the user may not realize are buttons

4. Not all buttons have tooltips

5. Some inconsistencies with Windows operating standards

6. Undo commands basically unsupported

7. Modal interface causes inconsistency in available features

The last four usability problems that are not discussed in detail in this report are: “Help content

uses different terminology than application,” “Default text in interface is difficult to read,”

“Similar buttons in different areas do different things,” and “System does not always provide

user with enough information about the task being performed.” These problems are not discussed

in detail because evaluators have classified them as superficial usability problems that should be

fixed only if extra time is available.

2

INTRODUCTION

This report describes the heuristic evaluation process and findings for Apple’s iTunes digital

music application. It begins with summary information describing the product and its target

population, and then continues with an overview of the heuristic evaluation technique in general,

the specific goals of this project, and the heuristics used in our walk-through of the application.

Following is a summary of the major problems identified by the heuristic evaluation and a more

detailed exploration of the findings related to these specific problems prioritized according to

their severity and impact on the user experience. The report concludes with a list of resources

related to heuristic evaluation and a detailed list of the actual heuristics used in the evaluation.

PRODUCT INFORMATION

Product Description

iTunes is a digital music application that allows both Windows and Mac users to create and

manage their digital music library on their computer. Users can rip songs from their favorite CDs

to store as MP3s in the music library; they can make their own mixes by creating customized

play lists, including smart play lists; and they can burn play lists to CD. While listening to music,

users can watch visualizations either in the iTunes window or as a full screen graphic. iTunes

also interfaces easily with iPod, Apple’s popular MP3 player, for simple transfer of music

between the computer and the mobile device. A unique feature of iTunes is the iTunes® Music

Store where users can search for and buy music for 99 cents a song without having to subscribe

to anything. iTunes can be downloaded free from the Apple website - www.apple.com.

Target Population

iTunes is targeted to people using computers running MacOS X, Windows 2000 or Windows

XP. In addition, anyone who listens to, organizes, or downloads digital music is part of the target

population. There are no specific demographic targets identified.

Figure 1: iTunes Interface

3

HEURISTIC EVALUATION TECHNIQUE

Methodology

The heuristic evaluation usability method was used to produce the findings summarized in this

report. According to renowned usability expert Jakob Nielsen, a “heuristic evaluation involves

having a small set of evaluators examine the interface and judge its compliance with recognized

usability principles (the ‘heuristics’)” (How to conduct a heuristic evaluation). Commonly

referred to as a “discount” usability technique (Nielsen, 1993, p. 160), this method allows

evaluators to discover possible usability problems in a product or application in a single

afternoon. Later, more expensive and extensive user testing can investigate the usability

problems identified through heuristic evaluation. When conducting a heuristic evaluation,

evaluators compare a pre-defined set of specific usability principles with a product or web site

interface while attempting to accomplish actual system tasks. Evaluators may either work

individually, combining findings later, or they may perform the evaluation at the same time with

each individual focusing on several different heuristics.

Specific Project Goals

For this project, three evaluators developed and used a set of nine heuristics to discover usability

problems in the iTunes digital music application interface. This evaluation focused on the core

functionality of the iTunes interface: importing, organizing, and playing digital music and

burning CDs. The interaction with Apple’s iPod MP3 player and the iTunes online Music Store

were not investigated. The evaluators each prepared results for two heuristics individually, and

then all three evaluated the remaining heuristics together in a joint product walk-through. Larger

problem areas and severities were reached through group consensus. The CUE heuristic

evaluation tool was not used in the preparation of this report.

The goal of this project was to identify major usability flaws in the iTunes digital music

application using established heuristic evaluation techniques. In addition, the heuristic evaluation

revealed controversial situations where the application may violate traditional heuristics while

remaining usable for the actual user. Once these usability problems were identified, they were

prioritized. Selected areas will be investigated further through user testing.

Heuristics Used

Many of the most commonly available lists of heuristics are specifically oriented toward the

evaluation of web sites. As a computer application, iTunes has a different interface and

navigation style than a traditional web site. To best accommodate these needs, we combined a set

of ten heuristics suggested by Jakob Nielsen (1993) and a set of nine design principles suggested

by Saul Greenberg, a professor of Human-Computer Interaction at the University of Calgary

(Design Principles and Usability Heuristics). To aid in the evaluation process, the broad

heuristics were supplemented with more descriptive notes and examples borrowed from Olson

(lecture notes, February 10, 2005). The nine heuristics used to evaluate the iTunes application

are summarized below and listed in full detail in Appendix A.

4

Number Broad Heuristic

1 Use Aesthetic and Minimalist Design

2 Effective Menu/Command Structure

3 Use Simple and Natural Language

4 Minimize User’s Memory Load

5 Be Consistent

6 Provide Feedback

7 Provide Clearly Marked Exits

8 Deal with Errors in a Positive Manner

9 Provide Help

Prioritization of Problems

In order to usefully group the findings resulting from this heuristic evaluation process, we

clustered specific instances of heuristic violations into eleven problem areas. To further

understand the impact of each of these problems, we estimated both its severity in terms of

usability principles and the ease with which the problem might be solved. Problem severity

ratings were impacted by the frequency with which the problem occurred, the ease with which

the user could overcome the problem, and the persistence of the problem—whether it could be

solved once or would bother the user every time a task was attempted. This resulted in a dual

rating for each problem found, which was used to prioritize the problem areas for presentation in

this report. The tables below define the severity and ease of fix rating systems applied. Severity

ranks are based on those defined by Jakob Nielsen (Severity ratings for usability problems).

Severity Rankings

Rating Definition

0 Violates a heuristic but doesn’t seem to be a usability problem.

1
Superficial usability problem: may be easily overcome by user or occurs extremely

infrequently. Does not need to be fixed for next release unless extra time is available.

2
Minor usability problem: may occur more frequently or be more difficult to overcome.

Fixing this should be given low priority for next release.

3
Major usability problem: occurs frequently and persistently or users may be unable or

unaware of how to fix the problem. Important to fix, so should be given high priority.

4
Usability catastrophe: Seriously impairs use of product and cannot be overcome by users.

Imperative to fix this before product can be released.

5

Ease of Fixing Rankings

Rating Definition

0
Problem would be extremely easy to fix. Could be completed by one team member before

next release.

1 Problem would be easy to fix. Involves specific interface elements and solution is clear.

2

Problem would require some effort to fix. Involves multiple aspects of the interface or

would require team of developers to implement changes before next release or solution is

not clear.

3

Usability problem would be difficult to fix. Requires concentrated development effort to

finish before next release, involves multiple aspects of interface. Solution may not be

immediately obvious or may be disputed.

6

SUMMARY OF FINDINGS

After completing the heuristic evaluation of the iTunes digital music application, we identified

eleven problem areas that violate traditional usability principles. These problems have been

prioritized below, with the most severe and easiest to fix problems listed first It illustrates that

iTunes has the largest number of usability problems in the area of consistency – this heuristic

was violated in six of the eleven problem areas. Particularly for Windows users unfamiliar with

the traditional Apple interface elements, there may also be significant memory load problems

(Heuristic #4 – Minimize user’s memory load). While these areas may not be considered

problematic by Apple users, Windows users are part of the iTunes target population. To better

support this part of their target population, iTunes developers may need to add additional

customization to the Windows version of iTunes. Of the eleven identified problem areas, the

seven most severe will be discussed in more detail in this report.

Problem
Severity

Ranking

Ease of

Fixing

Ranking

Heuristic

Number
Broad Heuristic

1
Inconsistencies between menus

and buttons.
3 1 #5 Be Consistent

2

Some language does not

correspond with user

terminology.

3 1 #3
Use Simple and Natural

Dialog

3
There are buttons that the user

may not realize are buttons.
3 2 #1, #4, #5

Aesthetic and minimalist

design; Minimize user’s

memory load; Be consistent

4 Not all buttons have tooltips. 2 1 #4 Minimize user’s memory load

5

Some inconsistencies with

Windows operating system

standards.

2 3 #4, #5
Minimize user’s memory

load; Be consistent

6
Undo commands basically

unsupported.
2 3 #7 Provide clearly marked exits

7

Modal interface causes

inconsistency in available

features.

2 3 #5 Be Consistent

8
Help content uses different

terminology than application.
1 0 #5, #9 Be Consistent; Provide Help

9
Default text in interface is

difficult to read.
1 2 #1

Aesthetic and Minimalist

Design

10
Similar buttons in different areas

do different things.
1 2 #5 Be Consistent

11

System does not always provide

user with enough information

about the task being performed.

1 3 #6, #8
Provide feedback; Deal with

errors in a positive manner

7

SPECIFIC PROBLEM AREAS

1. Inconsistencies between menus and buttons

Problem
Severity

Ranking

Ease of

Fixing

Ranking

Heuristic

Number
Broad Heuristic

1
Inconsistencies between

menus and buttons.
3 1 #5 Be Consistent

Problem:

While importing and organizing digital music within the iTunes interface, evaluators noticed

inconsistencies between language used in the menus, buttons, and tooltips available within the

interface. These problems violate heuristic #5, which states that vocabulary, labeling, and

functionality should be consistent within specific tasks and across the interface as a whole. This

problem area is ranked as a major usability problem because it occurs in various places

throughout the interface and also because it cannot be solved by any specific action on the part of

the user. Instead, the user must learn to associate different terminology with the same task,

increasing the amount of time required to learn the task. In addition, users may simply become

confused by this variant terminology. If the menu bar and the contextual right-click menus are

not consistent in the options offered, users may be fooled into believing that a specific task

cannot be performed.

Evidence:

This problem occurs throughout the iTunes interface. It would require an even more complete

evaluation by designers and usability professionals to discover all inconsistencies. However,

specific examples of varying language were noted by the evaluators:

Button/Tooltip Text Menu Text

Import Add File to Library

Burn Disc Burn Playlist to Disc

Visual Effects Visualizer

The difference in import terminology above is exacerbated by the fact that there is also a menu

option labeled “Import…” However, this menu option attempts to import a .txt, .xml, or .m3u

file and cannot be used to import music tracks.

In addition, a specific problem was noted with consistency between menus. While the right-click

contextual menu includes options to copy and delete (“clear”) a song in the library, it does not

have an option to paste that song elsewhere. In contrast, both the Copy and the Paste options are

enabled in the Edit menu.

8

Recommendation:

The obvious and simple solution to this problem is to perform a vocabulary analysis for this

application. Specifically, terminology used for buttons and tooltips in the application interface

should be compared with terminology used for the same functionality when accessed through the

menu. Once variant terminology has been discovered, designers and developers can work

together to establish the desired language for each function and then implement that language

throughout all aspects of the interface. While this would require coordination of effort, actually

changing the text used in the interface should be fairly simple.

2. Some language does not correspond with user terminology

Problem
Severity

Ranking

Ease of

Fixing

Ranking

Heuristic

Number
Broad Heuristic

2

Some language does not

correspond with user

terminology.

3 1 #3
Use Simple and Natural

Dialog

Problem:

In some cases, even when evaluators found that language was consistent throughout the iTunes

interface, the language chosen did not correspond well with the user’s terminology and

expectations. This violates the third heuristic, which guides designers to use simple and natural

dialog. As discussed in lecture, terms used by iTunes should be “as close as possible” to the

words that users would normally use when describing or thinking about an object or task (J.

Import music
tracks

Import text
files

9

“Clear” used in place of
more familiar, standard
“Delete”

Olson, February 10, 2005). In consciously choosing language that is both task-based and user-

oriented, iTunes designers can help new users locate the functions they need. In situations where

the language does not correspond, users may once again be required to “experiment” before

discovering a specific feature or option. This problem is ranked as a major usability problem

because it is impairs the user’s awareness and use of existing iTunes functionality

Evidence:

The use of language that does not correspond with user terminology is not a widespread problem

in iTunes. However, there are several specific, important instances where unusual language may

obscure the completion of routine tasks. A user looking to delete a song from their Music Library

(or from any play list), may expect to find a “delete” option when right-clicking the song or

opening the Edit menu. However, the term chosen by iTunes designers to represent the delete

functionality is “Clear.” It was only by accident that the evaluators discovered that “clear” really

means “delete” in iTunes.

Another situation where

iTunes language does not

match user language and

expectations is the “Add file

to library” option in the File

menu. This option can be

used to import audio tracks

from a CD, as well as from

another location on the hard

drive. However, users are

more familiar with the term

“track” than the term “file”

and thus may be confused

by this terminology.

Recommendation:

As with the first problem area, a thorough analysis of the vocabulary used in iTunes would help

point out situations where its language may differ from that commonly employed by users. Once

again, iTunes designers and developers could work together to define more appropriate

terminology for these situations. Obtaining input from actual users would also be helpful in

identifying the most recognizable terminology. Once decisions were made about specific

language, it would be a relatively simple task to change the text used in iTunes’ buttons and

menus.

10

3. There are buttons that the user may not realize are buttons

Problem
Severity

Ranking

Ease of

Fixing

Ranking

Heuristic

Number
Broad Heuristic

3
There are buttons that the user

may not realize are buttons.
3 2 #1, #4, #5

Aesthetic and minimalist

design; Minimize user’s

memory load; Be consistent

Problem:

A widespread problem encountered throughout the iTunes interface is the use of clickable

buttons that do not appear to be buttons. Part of this confusion stems from the fact that iTunes

originated as an application for the Macintosh, but is now also used on Windows machines.

Choice of color for some buttons also contributes to their mis-identification. This problem area

violates heuristics #1 and #4 (Aesthetic and minimalist design & Minimize user’s memory load),

which suggest that buttons should be graphically designed in such a way that the image or

symbol and colors used help communicate the purpose of the button. This is important both in

creating an appealing visual design and in minimizing the user’s memory load when using the

buttons. Graphic design and behavior of buttons should also be consistent with the standards set

in other applications available for a specific computing platform. By designing buttons that are

obvious, intuitive, and consistent with other programs, iTunes designers can help reduce the

learning curve for new iTunes users as well as help make power users aware of shortcuts

available through the interface.

Evidence:

There are several specific instances where portions of the iTunes interface that are clickable

buttons “hide” their functionality from users. Two of the three evaluators commented on the

Burn Disc button used in iTunes. The button is the same gray color as the iTunes interface, and

appears to be a closed hatch-style door. These evaluators were confused by the meaning

conveyed by the color and symbol choice—they thought that the gray color choice and the

closed doors indicated that the Burn Disc icon was not available because the computer did not

have a CD burner. As the images below illustrate, iTunes uses a very similar gray color in other

places in the interface to indicate menu options or buttons that are not available.

Standard iTunes Burn Disc
button – click this to begin
burning a CD.

Play controls are not available (grayed
out) when no song is selected in the
music store.

11

iTunes also makes use of a number of small, round, clickable buttons in the interface. Many of

these buttons are gray, which once again suggests to users that they may not be enabled. In

addition, unlike other Windows applications, these buttons do not change upon mouse-over.

Therefore, the user has no hint that they are actually buttons unless he or she actually clicks on

one to see what will happen.

Recommendation:

Solving this problem poses a more difficult design challenge in part because it would likely be

difficult to find a solution acceptable to all interested parties. The conscious choice to make the

iTunes interface as simple as possible meshes well with the use of small, simple buttons.

However, a change in button color might help the clickable areas of the iTunes interface stand

out from its gray background. In addition, it would also be helpful to highlight or change the

color of the button when the user moves the mouse over it. This technique is used in many

Windows applications to indicate to the user that a specific image or symbol is actually a

clickable button.

4. Not all buttons have tooltips

Problem
Severity

Ranking

Ease of

Fixing

Ranking

Heuristic

Number
Broad Heuristic

4 Not all buttons have tooltips. 2 1 #4
Minimize user’s memory

load

Problem:

The use of tooltips that appear when a user moves the mouse over a button has become a

common practice in many graphical applications. These tooltips generally provide very succinct

descriptions of that button’s functionality in order to assist users in identifying the correct button

for the task at hand. Tooltips for small graphical buttons can also play the role of reducing the

user’s memory load, as do permanent labels on other buttons. With tooltips, a user does not have

to remember exactly what each button does—they are can look it up almost instantaneously.

More examples of
buttons that do not
look like traditional
buttons and do not
change on mouse-
over.

12

Without tooltips, users run the risk of mis-identifying the functionality that button designers

attempt to communicate through choice of color and symbol. In addition, they have to remember

what function the button performs, which violates heuristic #4—Minimize user’s memory load.

Unfortunately, some buttons with important functionality in the iTunes interface do not have

appropriately descriptive tooltips. Since this problem occurs only with a small subset of the

buttons available in the iTunes interface, it has been ranked as a minor usability problem.

Evidence:

The majority of the buttons in iTunes do indeed have descriptive tooltips associated with them.

In fact, holding down the Ctrl key will display even more descriptive text for many buttons.

However, the small buttons described in the previous problem area usually lack any tooltip text

describing their purpose. This is especially problematic when these buttons provide access to

important functionality. For instance, the small, round ‘x’ button on the right side of the display

bar at the top of the iTunes interface can be used to stop importing or burning a CD. However,

most users are probably not aware of this button’s functionality due to its lack of description.

Recommendation:

To solve this problem, descriptive tooltip text should be added to every button in the iTunes

interface. This task would not be difficult for a developer to accomplish. The more complex part

of this recommendation lies in determining appropriate language for these descriptive tooltips.

Yet, since each of the currently unlabeled buttons generally has a clear functionality, even this

step should not be difficult to complete. For example, a simple ‘Stop’ tooltip for the small ‘x’

button in the display bar would cover the variety of modes in which the button can be used to

terminate the current action.

5. Some inconsistencies with Windows operating system standards

Problem
Severity

Ranking

Ease of

Fixing

Ranking

Heuristic

Number
Broad Heuristic

5

Some inconsistencies with

Windows operating system

standards.

2 3 #4, #5
Minimize user’s memory

load; Be consistent

Descriptive tooltip text for the create
playlist button (hold Ctrl key)

Switch display
– no tooltip

Stop import –
no tooltip

13

Problem:

Another issue observed by the evaluators was the challenges presented by maintaining an

application for two computing platforms (Windows and Macintosh) that have different design

standards. The Microsoft Windows version of iTunes was used in this heuristic evaluation. Two

of the evaluators use Windows as their primary computing platform while the third prefers to use

a Macintosh. Thus, we were suited to evaluate aspects of the iTunes interface that were standard

for Macintosh users but unfamiliar to Windows users. By maintaining consistency with standards

used throughout an operating system, iTunes designers can minimize the user’s need to

remember application-specific methods to perform common tasks (Heuristic #4—Minimize

user’s memory load & Heuristic #5—Be consistent) . This usability problem was ranked as

minor because it occurred infrequently during the heuristic evaluation and did not seriously

impair overall use of the iTunes interface.

Evidence:

In general, the iTunes interface has the look and feel of a Macintosh application, rather than a

Windows application. In most situations, this look and feel does not prevent Windows users from

accomplishing desired tasks. However, there are a few (at least) specific instances where more

thorough integration of Windows standards would be helpful to Windows users and would not

require a significant change in the overall look and feel of the application.

One of these situations occurs when there are multiple entries under Shared Music in the Source

window. For the most part, the sources form a single-level list that is not hierarchical. However,

when multiple shared music sources are found, they are listed hierarchically below the Shared

Music label in the Source window. A rightward-pointing triangle is used to indicate that the

Shared Music label can be expanded to reveal multiple entries beneath it. However, both

evaluators who primarily used Windows machines did not realize that this triangle could be

clicked to expand the Shared Music source. In fact, they did not even realize that the computer

had acquired multiple shared music sources since iTunes gave no other indications, and the

Shared Music label was not expanded by default.

Hierarchy browsing symbols traditionally
used in Windows applications (from
Windows Media Player)

Triangle hierarchy browsing symbol is not
intuitive for Windows users.

14

Recommendation:

For the Windows version of iTunes, the more standardized ‘+’ and ‘-‘ hierarchy browsing

symbols could be used to indicate sub-levels within the Source list. However, we also

recommend that a deeper solution would be for iTunes designers to complete a full inventory of

the iTunes interface to discover other elements that prove extremely unintuitive for the Windows

users in their target population and could easily be adjusted for the Windows version of iTunes.

It would be simple for iTunes developers to replace the Macintosh-oriented symbol for browsing

hierarchies with the Windows-oriented symbols. However, this problem is rated as requiring

some effort to fix because the implementation of this recommendation throughout the entire

interface would require much negotiation as to which aspects should be and could be changed

without altering the overall look and feel of the application.

6. Undo commands basically unsupported

Problem
Severity

Ranking

Ease of

Fixing

Ranking

Heuristic

Number
Broad Heuristic

6
Undo commands basically

unsupported.
2 3 #7

Provide clearly marked

exits

Problem:

As a rule, general computer users are accustomed to being able to back out of a change or

mistake they make by selecting UNDO. This command can be found in almost every computer

application. Unfortunately the UNDO command has limited support for undoing user actions in

iTunes. Furthermore, where it is supported it exhibits quirky behavior. This violates the seventh

heuristic, Provide clearly marked exits, which emphasizes that users should be able to undo or

back out of unwanted system states easily. The problem is ranked as minor since the changes and

mistakes are easy enough to overcome, but could be simplified more.

Evidence:

Supported and Quirky: While UNDO is supported during the editing of the ID3 tag information

either directly in the interface or via the song info window, it has some apparent issues. When

editing tag information in-line in the interface, UNDO is only available while you have a tag

highlighted and are actively editing it. Once a change is made the UNDO command is grayed out

and it is impossible to back out of the change made without re-editing the tag, which requires

that the user remember its initial state. In the song info dialog box, the same basic behavior

exists, though with a quirky twist. A user can UNDO a change made while in the field just

edited. Moving to another field and attempting to UNDO the change results in the first letter of

the field in which the cursor resides being replaced with a space while the change made in the

15

previous field remains. If UNDO is again selected, the cursor moves to the start of the field.

Another attempt to UNDO will not work because it is grayed out at that point. Moving back to

the changed field the user again has the opportunity to UNDO, and doing so will indeed undo the

change made. At this point UNDO remains active and will result in replacing the first character

of the field with a space.

Unsupported: When a song is deleted from a playlist the action cannot be undone since UNDO

remains grayed out. The only way to recover from the song deletion is to re-import the song into

the library. In addition when the song order is rearranged in a playlist it cannot be undone via the

UNDO command.

Recommendation:

One obvious and simple solution to the tag editing problem would be to only enable the UNDO

command when changes to a tag are made and not allow UNDO to change a field that hadn’t

already been changed by the user. In addition, undo support for backing out of modifications

made to a play list, either through deletion or reordering, should be enabled. The ability for a

user to recover from accidentally deleting a song without having to re-import it would greatly

enhance the user experience.

7. Modal interface causes inconsistency in available features

Problem
Severity

Ranking

Ease of

Fixing

Ranking

Heuristic

Number
Broad Heuristic

7

Modal interface causes

inconsistency in available

features.

2 3 #5 Be Consistent

Problem:

To maintain complete consistency throughout an interface, “the same information should be

presented in the same location on all screens and dialog boxes and it should be formatted in the

same way” (Nielsen, 1993, p. 132). In addition, usability principles recommend avoiding

“modes” in application interfaces which permit access to different functionality according to the

current mode. An example of this problem given in class is the Print Preview mode of Microsoft

Windows which does not allow the user to actually edit the document he or she is previewing.

In some ways, iTunes also presents a modal interface to users. The functionality available in the

interface changes based on the currently selected music source. This violates the fifth heuristic,

which counsels designers to maintain complete consistency throughout the interface. In many

instances, a change in Source hides available functionality by making it available only from the

menu. In other instances, interface tools are available on an inconsistent basis between different

source modes. In general, buttons seem to change based on the currently selected Source. This

usability problem is ranked as minor primarily because it is unclear whether its manifestation in

16

the interface actually makes the application more confusing for users. According to survey

results, the iTunes interface is generally considered simple and easy to use. Fixing this problem

might actually make a simple interface more complicated and more difficult to use.

Evidence:

The largest button in the interface (next to the search box), changes based on the Source

currently selected in the iTunes interface. It rotates between five different functions that are

displayed in the table below.

Source window selection Button displayed next to Search box

Library, Music Store

Audio CD

Playlist, Smart Playlist, Shared Music

Party Shuffle, Radio

Visualizer
Note: the Visualizer is not an option in the Source List, but is

available from a button in the interface

While the changes in the button attempt to provide easy access to the most frequently-used

feature within a specific mode, they can be disorienting to users and can cause confusion about

the availability of features between different modes.

For example, the button is labeled “Browse” when the Library source is selected. It then

becomes the “Burn Disc” icon when a play list is selected. However, the Browse functionality is

still available within a play list through the Edit menu. Since the Browse button disappears,

many users (including the evaluators) may assume that the Browser is available only within the

Library.

17

Recommendation:

The modality of the iTunes interface is a consequence of adopting a simple interface with a

consistent layout – Source list on the left, song list on the right. Because the use of modes is

tightly integrated with the interface, this usability problem was rated difficult to fix. Any

comprehensive solution would require changes to the overall layout of the interface, and it

remains unclear whether these changes would actually make the application more usable.

Additional user testing on prototype systems might help provide more insight into the issue.

However, a preliminary idea would be to provide some sort of drop-down in the area of the

Browse/Burn/Import/Refresh button that would list all of the features available from that button.

Options that could not be performed within the selected source could be grayed out in the same

manner that options are grayed out within the menu system.

Browse feature is still
available within a play list.

Library Browse button is replaced
with Burn Disc button.

18

SUMMARY

While Apple’s iTunes digital music application is generally considered easy to use, a detailed

heuristic evaluation based on nine general usability principles revealed a number of specific

usability problems. These specific usability problems were clustered into eleven general problem

areas and ranked according to severity and the ease with which they could be fixed. The seven

most severe problem areas were addressed in more detail in this report, providing information

about the general problem, some specific examples, and a high-level recommendation for solving

the problem.

The seven most severe and easiest to fix problems are:

1. Inconsistencies between menus and buttons

2. Some language does not correspond with user terminology

3. There are buttons that the user may not realize are buttons

4. Not all buttons have tooltips

5. Some inconsistencies with Windows operating standards

6. Undo commands basically unsupported

7. Modal interface causes inconsistency in available features

By investigating these problem areas in more depth and implementing user-centered solutions,

iTunes designers will be able to make an already well-designed product even easier to use.

RESOURCES

Greenberg, S. (n.d.). Design Principles and Usability Heuristics. Accessed February 23, 2005, at

http://pages.cpsc.ucalgary.ca/~saul/hci_topics/pdf_files/heuristics.pdf

Nielsen, J. (1993). “Usability Heuristics.” In Usability Engineering. San Diego, CA: Academic

Press.

Nielsen, J. (n.d.). How to Conduct a Heuristic Evaluation. Accessed February 9, 2005, at

http://www.useit.com/papers/heuristic/heuristic_evaluation.html

Nielsen, J. (n.d.) Severity Rankings for Usability Problems. Access February 22, 2005, from

http://www.useit.com/papers/heuristic/severityrating.html

Nielsen, J. (n.d.). Ten Usability Heuristics. Accessed February 9, 2005, at

http://www.useit.com/papers/heuristic/heuristic_list.html

Olson, J. (2005, February 10). Quick Methods: Checklists, Heuristic Evaluation, Cognitive

Walkthrough. Slides presented in a lecture at University of Michigan School of

Information, Ann Arbor, MI.

19

APPENDIX A: DETAILED HEURISTIC LIST

1. Use Aesthetic and Minimalist Design

• Less is more – less information/less complex structure is easier to understand.

• Extraneous information risks confusing the novice user and slows down the expert

user.

• Text size, font, and spacing allow the user to read the font.

• Color is used to highlight current area of work or group functionally related items.

• Screen layout uses gestalt rules for human perception to increase users’ understanding

of relationships between the dialogue elements.

2. Effective Menu/Command Structure

• Frequently used commands are easily accessible.

• Related commands are grouped together.

• Experienced users have shortcuts to perform frequent operations quickly.

3. Use Simple and Natural Language

• Simplify and shorten text as much as possible.

• Use words, phrases, and concepts that are familiar to the user, rather than system-

oriented terms.

• Use words based on the task that the user is trying to accomplish.

4. Minimize User’s Memory Load

• Utilize recognition rather than recall.

• Make available tools/options visible to user (no scrolling required).

• Include appropriate labels so that users can easily locate desired buttons/menu options.

• Provide hover text over labeled/unlabelled buttons.

• Use a small number of pervasive rules or generic commands that apply throughout the

user interface.

5. Be Consistent

• Vocabulary/labeling should be consistent within tasks.

• The same function/label should do the same thing everywhere throughout the

application.

• Same information should be presented in the same location and formatted in the same

way on all screens and dialog boxes.

6. Provide Feedback

• Inform the user about what the system is doing.

• Show progress achieved toward goal, particularly if operation takes more than 10

seconds to complete.

• Notify user when a task is completed.

7. Provide Clearly Marked Exits

• Allow user to cancel a system function or leave and unwanted state easily.

20

• Include cancel buttons in dialog boxes.

• Support generic undo and redo commands throughout the system.

8. Deal with Errors in a Positive Manner

• Error messages indicate specific problem in plain language.

• Error messages suggest a solution to help user solve the problem.

9. Provide Help

• Easy to search for solutions to specific problems.

• Help content is written in a task-oriented fashion.

• Each help section is as self-contained as possible.

